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Evolving random cellular structures are observed to reach a universal scaling regime. A mean-field
approach to finding fixed-point distributions in cell-side number is extended to distributions for the aver-
age area of cells with a given number of sides. This approach leads to simplified equations that can be
analyzed analytically and numerically. The theory’s results are compared to experimental results on dy-
namics and distributions in soap froths and good agreement is achieved.
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I. INTRODUCTION

Many examples of random cellular structures, in which
cells have random areas and numbers of sides, exist in na-
ture [1]. These include polycrystals [2—-4], magnetic bub-
bles in garnets [5-8], foams, and soap froths [9,10].
These systems exhibit structures which coarsen continu-
ally with time without reaching thermal equilibrium.
Nevertheless, they all reach a scale-invariant regime with
a steady-state distribution in some of their properties.
One would like to understand the evolution and statisti-
cal properties of this interesting class of systems, as a
simple example of scale-invariant evolution in systems far
from thermal equilibrium. Most of the investigations of
these systems have concentrated on the two-dimensional
(2D) case, which is more accessible to both theoretical
and experimental treatments. Experiments on various
cellular systems of this type have shown that after a tran-
sient period, a scaling regime sets in where all cell statis-
tics reach a steady-state limit up to a uniform rescaling in
area. In this regime the area scale, given by the average
area of a cell, grows linearly with time, and the distribu-
tions of cell-side number and normalized area (the area
normalized by the average cell area) become invariant
[9-12]. Although the physical processes governing the
evolution of these systems are very different from one
another, the steady-state distributions are remarkably
similar, suggesting a universal mechanism for the
creation of such distributions.

These systems were studied in the context of soap
foams by Von Neumann [13]. Consider, for example, a
2D array of soap bubbles, made up of liquid film mem-
branes separating gas-filled cells. The gas diffuses slowly
across the liquid membranes. If we ignore for a moment
the diffusion of the gas, the energy of the system stems
from the surface tension of the membranes, and is there-
fore proportional to the total length of the cell walls. The
requirement that this energy be at a local minimum im-
plies that under generic conditions three walls meet at
each vertex, and that the angle between walls is 120°.
This assures mechanical equilibrium at each vertex. If we
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now consider the gas diffusion, but assume that the time
scale of diffusion is very long relative to the time scale of
the wall adjustment, the above conditions at the vertices
still hold, but the structure evolves slowly, some cells
growing and others shrinking as a result of the diffusion.
In this case Von Neumann proved that the growth of
each cell is simply given by

da(l) _ ..
k=6,

(1.1)
a(l) being the area of any /-sided cell (here called an I-
cell) and K a constant, depending only on the diffusivity
of the gas through the soap film and on the surface ten-
sion of the liquid walls. Therefore in such systems all
cells with / <6 shrink while cells with / > 6 grow (the to-
tal area remaining of course constant). Assuming that
three cell sides meet at each vertex, it can be shown from
Euler’s law (V —E +F =2 for the V vertices, E edges,
and F faces of a closed two-dimensional graph) that the
average number of sides per cell is six in a large system.

In addition to ordinary cell growth, two further pro-
cesses make up the system’s evolution: a neighbor-
switching T1 process, and T2 processes where a three-,
four-, or five-cell disappears (Fig. 1); T stands for trans-
formation. Such soap foams have been reproduced in ex-
periment [10] and the 120° law and Von Neumann
growth law verified.

In other systems analogous mechanisms create a simi-
lar evolution of cellular structure. In polycrystals the
diffusion between bubbles is replaced by growth of some
grains at the expense of others, the curvature of the cell
walls resulting from mechanical equilibrium of the grain
boundary tensions at the vertices. However, as opposed
to the isotropic case of a soap foam, in this case an an-
isotropy enters the system, since the boundary energy is
dependent on the difference in orientation 0 between the
crystal lattices of the two neighboring domains, and on
the orientation of the domain wall. Nevertheless, certain
systems have been observed where the effect of the anisot-
ropy is small: most of the cell angles stay close to 120°,
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and Von Neumann’s growth law is obeyed for most cells.
The model for isotropic systems is thus a good first ap-
proximation for such polycrystals. For random cellular
structures in general, the model allows us to gain insight
into the mechanisms driving the evolution of such struc-
tures, especially with respect to the existence of a scaling
regime and of universality of distributions in such a re-
gime.

Different theoretical approaches have been used for
deriving the distributions of two variables of interest that
can be measured experimentally, namely, the area and
the number of cell sides [14—17]. The models usually
take the form of complicated sets of equations, which can
only be studied by numerical methods. Recently a model
for the distribution of the number of cell sides was intro-
duced [18] where the areas of the cells were integrated
out. The resulting dynamical equations for the evolution
of the cell-side distribution are simple enough to enable
one to get some insight regarding the behavior of the sys-
tem in the scaling regime. The price one has to pay for
this simplicity is the introduction of three phenomenolog-
ical parameters, to be obtained from experiment. These
parameters are the disappearance rates of three-, four-,
and five-sided cells. In analyzing the dynamics of these
equations it was found that they possess not just a single

RN
\V/ = (0)
w = (d)

FIG. 1. Processes in cellular systems. (a) shows a T1 process,
(b)—(d) three-, four-, and five-cell disappearances.

fixed distribution, but rather a one-parameter family of
such distributions. A selection mechanism was proposed
according to which a particular fixed distribution is
dynamically selected to describe the long-time behavior
of the system in the scaling regime.

In this paper we extend the model to include the nor-
malized average areas of /-sided cells, the areas being nor-
malized by the total average area over all cells. The ex-
tended model exhibits the same selection mechanism for
the fixed-point distribution as the model of Ref. [18]. The
model involves four parameters, the three disappearance
rates and the Von Neumann growth rate constant K.
However, the distributions derived from the model de-
pend only on the ratios between these parameters, so that
the predictions of the model are actually dependent on
three independent constants. It is found that the average
area of /-sided cells grows linearly with / for large /, in ac-
cordance with Lewis’s law [1]. For small / our results
reproduce the deviations from Lewis’s law observed in
experiments. We also report new experimental results
obtained for soap froths, from which the parameters of
the model can be determined. Using the experimentally
determined parameters, one obtains the average area and
the cell-side distributions. Good agreement between
these distributions and the experimentally determined
ones is found.

The paper is organized as follows. In Sec. II we de-
scribe the model for the cell-side distribution and its ex-
tension to include the distribution of the average areas.
In Sec. III we describe several methods of measuring the
parameters of the model and present the experimental re-
sults.

II. THE MODEL

We begin by reviewing the model presented in Ref. [18]
for the evolution of the number N,(z) of I-sided cells. We
then extend the model to include the average area a; of
these cells, normalized by the area @ averaged over all the
cells in the system.

The statistical properties of the system are described
by the variables N,(a,t), where N,(a,t)da is the number
of Il-cells with area between a and (a +da) at a given
time. In the scaling regime, reached in the long-time lim-
it, the distributions N,(a,t) may be written as

Ny(a,t)=N,(a/a)/t*, 2.1)

where @ is the average cell area and a is a scaling ex-
ponent. It has been shown [19] that this scaling form to-
gether with Von Neumann’s law imply that the average
cellular area @ grows linearly in time, and that a=2. In
our simplified model, we consider the variables

N, ()= [ Ny(a,t)da . 2.2)
Since, experimentally, no two-sided cells are found in
these systems we take N, =0 as a boundary condition.

As the system evolves, cells with three, four, and five
sides shrink at a constant rate by Von Neumann’s law.
The eventual disappearance of such cells, usually referred
to as the T2 processes, change the N,’s, as pictured in
Figs. 1(b)-1(d). We denote the disappearance rate of
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these cells as w; (I =3,4,5). The disappearance of an I-
cell affects not only the number of I-cells, but also the
number of sides of the neighbors of the disappearing cell.
A three-cell disappearance removes a side from each of
its neighboring cells, a four-cell disappearance removes a
side from two of its neighbors, and a five-cell disappear-
ance removes a side from two of its neighbors and adds a
side to one of its neighbors. Another transformation that
affects the N, is the neighbor-switching or T1 process,
pictured in Fig. 1(a). Two of the cells involved in a T1
process lose a side, and the two others gain a side. This
process does not change the number of cells. Since exper-
imentally for soap froths T1 processes occur almost ex-
clusively to sides of five-cells, we take them as happening
only to such sides, with a rate of w,.

We now write down master equations for the evolution
in the I-cell populations. To describe the change in N, as
a result of an /-cell neighboring a disappearing m-cell, we
need to know the probability that a given side of the m-
cell belongs to an /-cell. We denote this probability by
P(Il,m). The equation for the evolution of the population
of the three-cells, for example, is then

dN,
dt

= —w;N;+3w;P(4,3)N;+2w,P(4,4,)N,

+2wsP(4,5)Ns+w,P(4,5)N5

_w5P(5,3)N5_2w1P(5,3)N5 . (2.3)

The first term represents the disappearance of three-cells,
and the next four terms describe four-cells turning into
three-cells due to the disappearance of a neighboring
three-, four-, or five-sided cell or a T1 process, respective-
ly. The last two terms describe a three-cell turning into a
four-cell, due to the disappearance of a neighboring five-
cell or a T1 process, respectively.

We now introduce a mean-field approximation for the
correlation functions P(l,m). A simple way to do this
would be to neglect all correlations and simply write
P(l,m)=IN,/6N =Ix, /6, where we denote by x; the con-
centration of /-cells, N;/N. This means taking the proba-
bility of a side being an [ side as equal to the proportion
of I sides among all the 6N sides in the system. However,
to avoid generating two-sided cells, which do not appear
in experimental systems, one has to set P(3,m)=0,
m =3,4,5 for side-removal processes. Setting P(3,m) to
zero necessitates adjusting the normalization so that the
sum over [/ of the P(I,m) will remain one. Therefore we
take for m =3, 4, and 5

0, /=3

P(l,m)= lxl/(6—3X3),

1>3. (2.4)

Forbidding three-cell neighbors of a disappearing cell is
not necessary for side-addition processes, so there we can
simply take the probability for all / as P(I,m)=Ix, /6.

Other choices for the P(l,m) are possible, and indeed
in the original model of Ref. [18] a slightly different
choice was made. However, our equations and those of
Ref. [18] give the same general picture for the steady-
state solution.

This approximation now gives for the N; equation
dN, 4x,(3wsN3+2wy N4+ 2wsNs+w;Ns)
dt (6—3x3;)

—3x3(wsNs+2w,;Ns5)/6 .

=—w;N;

(2.5)

The equations for the evolution of any N, can be derived
in a similar fashion. If we sum these equations we find
ﬂ=—-(w3N3 +w,N,—wsNs) ,
dt
where as expected, the right-hand side is the total disap-
pearance rate. We now consider the /-cell concentrations
x;=N,;/N. Their distribution should not change in the
scaling regime, which means that in the scaling regime
they should have a distribution which is a fixed point of
the evolution equations. These equations for the x; can
be derived from the rates of change of N and N;. The full
equations for the x; are

(2.6)

%=—-D,x,+K0x,+K1[(l+1)x1+1——alx1]
—K,[Ix;—a;(1 —1)x;_;], 1=3,4,..., (2.7a)
where
0, /=3
a1, 1>3
and the disappearance rates are
wy, =3
wytw(xs/x,), [=4
D= \ws—w, 1=5 (2.7b)
0, I>5.

Since each T1 process transfers a cell wall that initially
borders a five-cell to a neighboring cell, each such process
removes one from the five-cell population and adds one to
the four-cell population, besides other changes to the gen-
eral cell population. The disappearance rates are adjust-
ed accordingly for / =4,5. The rate constants are

Ko=(wix;twyx, twsxs), (2.7¢c)
the rate of change in the total number of cells,
K, - (Bw;x;+2wyux, +2wsxs +w xs5)/(6—3x5) , (2.7d)
the cell-side-removal rate coefficient, and
K,=(ws+2w,)xs/6, (2.7e)

the cell-side-addition rate coefficient.

The first term in Eq. (2.7a) describes cell disappear-
ance, the second term comes from the change in the total
number of cells, the third term from cell-side removal,
and the last term from cell-side addition from five-cell
disappearance and T1 processes.

Since T1 processes are observed to be relatively rare,
and since calculations show that a slow rate of T1 pro-
cesses has only a minor effect on the final distributions,
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we here neglect these processes and take w; =0.
The equations for the x; in this case are then
dx !

7: —w,x,+K0x1+K,[(l +1 )x1+1—a1x1]

—Kz[lxl"_a[(l"‘l)xl_l] N l=3,4,..., (283)

where w; =0 for / >5. The rate constants are now just

K, =QCw;3x;+2w,x,+2wsxs)/(6—3x5) (2.8b)

and

K2:w5x5/6 . (2-80)

The equations preserve the two sum rules for the x;,
ZIXI =1 and Ellx, =6.

The w, are the disappearance rates for I-cells, and are
free parameters in the mean-field model. Since only the
ratios between the w; determine the fixed distribution, we
have two free parameters to determine from experiment.
Since the w, scale the same way in time, w; =w;* /t, we
will in this section take (1/¢) out of the equations as a
common factor, and understand w;* for w;.

The evolution equations (2.8) have, as in the equations
in Ref. [18], a one-parameter family of steady-state solu-
tions, for fixed values of the rates w;,. In the first two
equations, only the fixed values of x;, x4, and x5 appear,
so given any x; satisfying 0=x;=1, x, and x5 can be
determined by solving these equations. We can then
solve iteratively for the rest of the distribution, finding x,
from the (/ —1)th equation. These equations have the
form of a difference equation

K1y1+1—(K1+K2)y1+K2y1_1+K0y1/l=0, l>5,

(2.9)

where y,=Ix,;, and K, K, and K, are functions of x;,
x4, and x5 [as given in Eq. (2.8)]. This equation has solu-
tions which for large / take the form

1

yi=M*|1+0 (2.10)

Inserting this asymptotic form in Eq. (2.9) we find that
there exist two solutions of this type with

and
Azzl, Ki\=—7,

where y=K,/(K;—K,). Thus for large ! the cell-side
distribution may be written as a linear combination of the
two solutions:

1

2|\ rri4prTr

1

x~ A (2.11)

where A4 and B depend on the fixed-point values of x;,
x4, and x5, as found from the first two fixed-point equa-
tions. On the line of solutions B passes smoothly through
zero. The solutions for B <0 are unphysical, since they

give negative concentrations for large /; the decay at the
point B =0 is exponential. Linear stability analysis
shows that all solutions with B =0 are stable.

Since only one fixed point is observed experimentally,
Ref. [18] proposed a selection mechanism by which the
fixed point corresponding to the distribution with the
smallest tail is chosen, i.e., that with the strongest decay
for large /. This fixed point is marginally stable. This
distribution, which we will call the critical distribution, is
closest to all physically reasonable initial distributions,
which are necessarily finite, i.e., are such that for some L,
x;=0for all I > L. The fixed-point distributions from the
Ref. [18] equations all decay exponentially; the critical
distribution with the fastest decay is selected. In the
model presented in this paper the selected fixed point,
that for which B =0, is differentiated even more strongly
from the other fixed-point distributions, since it is the
only one with an exponentially decaying tail. Simulations
of distribution evolution from various initial distribu-
tions, by integrating Egs. (2.8), support this selection pic-
ture. All finite initial distributions tend to the critical
fixed point. The simulations also show that the form of
the distribution tail determines the final steady state: in
other words, distributions evolve to that fixed point
closest to them in its asymptotic (large /) distribution.
While all fixed points are stable under a perturbation in
the value of a small number of x;’s they evolve to a
different fixed point when a global perturbation is made
in the distribution of the tail (for example, changing the
exponent of decay of x; with [ for all / > 20), even though
the total change made is extremely small.

As a check for the applicability of the mean-field ap-
proximation we consider the dynamics of soap froths sub-
jected to T1 processes only. Here we assume that the
processes take place in cells with arbitrary number of
sides [not just five, as taken in Eq. (2.7)]. For this case
the mean-field equations are exactly soluble. Moreover,
the exact distribution corresponding to this model has
been calculated exactly by Boulatov et al. [20] in their
studies of fluctuating random surfaces. The mean-field
equations for this case are derived in the Appendix. Un-
like the model given in Eq. (2.8), where the number of
cells decreases with time due to the T2 processes, here
the number of cells is conserved and the system reaches a
thermodynamic equilibrium. Boulatov et al. found that
the asymptotic form for large [ takes the form

X~V (2.12)
In our mean-field calculation we find that the model ex-
hibits a single stable fixed point (not a line as in the model
with T2 processes) with cell-side distribution

x;~(0.85)'/1 (2.13)

for all I’s, in a rather good agreement with the exact re-
sult.

We now extend this picture to include as variables the
average area of [-cells for the different ’s. In the scaling
regime the distribution of the average areas a; for /-sided
cells, normalized by the overall average cell area &,
should reach a steady-state limit, as should the distribu-
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tion of the total area A4, covered by I-cells. In order to
calculate these areas, we do not consider the full distribu-
tion N;(a,t), but rather we write down evolution equa-
tions for the a; (or A4;) again using a mean-field approxi-
mation. We note that the average area of I-cells is
A;/N,, so that the normalized area is given by
a,=A,;/aN,. Using a= A /N, where A is the total area,
and N;=Nx,;, we have a;= A,/ Ax;. The central assump-
tion that allows us to directly write a model for the a; is
that when an I-cell turns into an (/%1)-cell, as a result of
the disappearance of a neighboring cell, it does so with
the average /-cell area, a;. The resulting equations allow
a simple treatment of area averages without using a full
model for the joint distributions of area and cell-side
number. The price of this simplification, as we will see, is
the addition of a new free parameter, not determined by
the theory, namely, the cell growth constant as appearing
in Von Neumann’s equation (or rather, the ratio between
Von Neumann’s constant and the disappearance rates).
In a full microscopic model the fixed-point distribution
would not be dependent on any free parameters, the
disappearance rates being derivable from Von Neumann’s
constant and the density of cells at zero area.

To illustrate the structure of the equations for the areas
we consider the rate of change in the total area covered
by three-cells A;. This rate of change, d 43 /0¢, is made
up of three contributions: the usual Von Neumann
growth rate —3KN;, the addition of area from four-cells
at an average area of 4,/N, joining the three-cell popu-
lation at a rate of 4N,K,, giving a contribution of
4N,K,(A4/N,), and the decrease of area from three-
cells turning into four-cells, 3N;N;K,(A45/N;). Thus
the equation for the evolution of the total three-cell area
is

04,
at

The general equation for the evolution of I-cells is derived
in much the same way:

04
—, —U—OKN+K [+ DA —ayl 4]

=—3KN,—3K,A,+4K A, . (2.14)

+K2[a1(l—1)A1_1*lA,] N (2.15)

where «, is defined in Eq. (2.7). The equations for the
normalized average cell areas a; are then easily derived
from the relation a; = A4,/ Ax,, so that

0 _ 1y ey Ay axpy (2.16
YR AFY 1AX Ty 16
Substituting Eqgs. (2.8) and (2.15) we have
aa] (l+1)x1+1
*5?=K'(l—6)+w,al—01K0+K1i(a1+1-a,)
(I—1)x;_,
+a1K2—~**——*—(a1_1—al) s (2.17)

where K'=K /a. Since w;~(1/t) and @~t, all terms
scale the same way with time and we again implicitly fac-
tor t out of the equation. The first term represents the

regular Von Neumann growth, the second term
represents the change due to three-, four-, and five-cell
disappearance with zero area, the third term the change
in the average area due to the change in the total number
of cells, the fourth term the change due to an (I +1)-cell
with area a; ., joining the /-cells with area a;, and the last
term the change due to an (I —1)-cell with area a;_;
turning into an /-cell. Note that when an /-cell turns into
an (I/%1)-cell, the average area of the Il-cells does not
change, since it is assumed that the area of the disappear-
ing I-cell is equal to the average area a;.

The extended model thus consists of two sets of equa-
tions: one set [Eq. (2.8)] for the rate of change in the x;
involving the x; only, the other set [Eq. (2.17)] for the
rate of change in the q; involving both the q; and the x;.
To find the fixed point we solve the first set for the x,;,
find the fixed point chosen by the selection mechanism,
then solve the second set of equations for the a; with the
x; acting as parameters [21].

The a, fixed-point equations have a one-parameter fam-
ily of solutions. However, only one of these solutions
obeys the sum rule

leal=l ’ (218)
1=3
which should be satisfied by the definition of the normal-
ized a;.

While experimentally the normalized average area of
the three-cells is of order of magnitude 10™2, this is by no
means the case for the solutions obeying the sum rule for
all given K, w;, wy, and ws. For given w,;, a; has a
strong linear dependence on K, and only for a very nar-
row range of K’s do we get a reasonable answer for a;.
Thus a given set of w;’s effectively determine K. For the
set of experimentally determined w; (see Sec. III) we find
that K' must be equal to 1.0.

The dependence of q; on [ for the physically reasonable
solutions (those with small a;) becomes close to linear for
1 > 6,7 (see Fig. 2). The a; equation for / — o gives, for
the asymptotic slope y (so that a,~yI),

8
o 4 r
o L
0 I
2 12 14

FIG. 2. Theoretical area distribution for various sets of rate
coefficients. The triangles denote w, = {24,6,1}, squares denote
w; ={48,6,1}, and the circles denote w;={36,10,1}. The lines
serve as guides to the eye.
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KI

Y K. ¥K,—K, - (2.19)
Furthermore, it is easy to show that if we assume an
asymptotic power-law dependence of a; on [/ then the
only solution is linear in /. Lewis conjectured on the
basis of experimental observations that g, is linear in !/
(Lewis’s law). The conclusion from our model is that this
law is satisfied only asymptotically. Since the w; essen-
tially determine the K, they also determine the slope v,
which turns out to have quite a weak dependence on the
w; chosen (Fig. 2).

III. EXPERIMENTAL METHODS AND RESULTS

In order to compare the predictions of the model de-
scribed in the preceding section with experimental distri-
butions, one has to determine the values of the time-
independent ratios w3 /ws, w,/ws, and K'/ws from ex-
periment. One may then use them as input parameters to
calculate the cell-side and area distributions in the model.
It has been found from experiments that triangular cells
appear so rarely that it is impossible to determine their
rate of disappearance w;. Therefore in our experimental
observations we refer only to cells with four or more
sides, and compare the results to a model in which three-
sided cells do not appear. Such a model is trivially con-
structed in the same way as the model presented in the
previous sections. The creation of three-cells is prevented
in the same way that the creation of two-cells is prevent-
ed in the usual model. In this section we describe three
independent methods we used to determine these parame-
ters from experiments on soap froths, and present our re-
sults. The experimental system itself has already been de-
scribed in Ref. [10], to which we refer the reader for de-
tails.

Perhaps the best way of extracting the values of w, /wj;
and ws /K’ from experimental data has been described in
Ref. [18]. It is based on the relationship between the
rates of disappearance w,; and the quantities N,(0,?),

w, =K (6—DN,(0,)/N,(2) . 3.1)

One can therefore find the ratios of the w; by finding the
ratio between the respective zero-area densities
p1=N;(0,t)/N,(t) at any given time. Note that these
densities scale like 1/¢. The easiest way to implement
this method is to plot the total number M;(a) of I-cells
having an area up to a given value a as a function of a.
The slope of this plot at the origin is p; and thus from Eq.

(3.1) one obtains the ratio
w4/w5:2p4/p5 . (3-2)

We show in Fig. 3 typical plots for M (a) and Ms(a).
The values of p, extracted from these plots yield

wy/ws=7.6x0.5 . (3.3)
Further use of Eq. (3.1) and the definition of K’ yield
ws/K'=a(t)ps . (3.4)

In using this equation, @(¢) is measured for the same time

0 1 2 3
area (arb. units)

FIG. 3. Number of four- and five-sided cells having area up
to a given a, taken from experiment. The disappearance rates
can be found from the slope at zero. Empty circles represent
five-sided cells, full circles four-sided cells. The area is in arbi-
trary units, and the lines serve as a guide to the eye.

t as the density ps. A typical plot of @(¢) is shown in Fig.
4. These measurements yield

ws/K'=1.70£0.20 . (3.5)

A direct way of measuring w,/ws is based on the
definition of the parameters w;:

1 [sz

_ 1 AN,dis
N, | dt

Ar (3.6)

w;
dis N I

where AN is the number of /-cells that disappear dur-
ing a time interval Az. AN accounts for the actual
disappearance of /-cells, and not for their elimination due
to neighbor disappearances. Thus w, can be estimated by
measuring AN/ from consecutive pictures taken at

short-time intervals. Using this method we obtained

w,/ws=6.6x£0.7 , (3.7

which is consistent with the value obtained with the pre-
vious method.
Finally, a third method enabled us to determine the

4

0

=

3

s 37
s

[

2 1 1 | |
0 5 10 15 20 25

time (h)
FIG. 4. A typical experimental plot of average cell area as a
function of time.
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value of w5/K' from the same sequence of pictures by
measuring ws and K’ separately. To measure ws we used
the scaling assumption, according to which N, must scale
as 1/t in order for the x; to be time independent. One

can then define the time-independent quantity N* by
N;=Nj/t . (3.8)

Using Eq. (3.1) and the time-independent quantities w;*
defined in Sec. II we obtain

dN[ w,*N,*
= 3 (3.9)
dt dis t
while differentiating Eq. (3.8) yields
N (3.10)
dt 2 )

Dividing the latter two equations one by the other we ob-
tain

dN,; . . 4N, 311

dr g a0 G.11)
which when integrated yields

NES(t)=—wrN,(t)+c . 3.12)

Here Nf(¢) is the total number of /-cells which have
disappeared up to time ¢t. Thus a simple count of cell
disappearances over a given time period yields w?. In
Fig. 5 we show a plot of Nf(¢) as a function of N,(z),
whose slope yields wi. We obtained w¥ =2.1+0.1 from
which ws can be obtained by multiplying z. K’ can be ex-

tracted from the data from direct measurements of Von

Neumann’s constant K and the average area a. This
yields
ws/K'=1.7+0.2 , (3.13)

in agreement with the values obtained with the previous

120

N dis

40 |-

90 110 130 150
N

5

FIG. 5. The number of five-sided cells that have disappeared
by shrinking up to a given time, Ny, vs the number of five-cells
at that time.
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FIG. 6. Experimental and theoretical results for x;. The
squares represent the theoretical results, with the parameters
taking their experimental values (w4 /ws=7.6), and the circles
with error bars represent the experimental values.

method.

This value is different from the theoretical one,
ws/K’=1.0 (see Sec. II). We have seen that our simple
model assumes that /-cells losing sides by the disappear-
ance of neighboring cells have the average /-cell area aq;.
Experimental observations indicate, however, that it is
more accurate to assume that I-cells losing sides have an
area equal to the average of a, and a;_;. This is easily
incorporated into the model, and the results indeed give a
value for K’ consistent with the experimental value. The
other predictions of the model are not affected
significantly by this change.

The results of our measurements of the x; and a, distri-
butions are shown in Figs. 6 and 7. The agreement with
our model’s prediction is very good in the case of the x,,
while in the case of the a; the theory successfully predicts
the qualitative behavior of the experimental distribution,
with some numerical discrepancy for some values of I.
The experimental results bear out our theoretical predic-
tion that Lewis’s law of linear dependence is satisfied only
asymptotically.
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FIG. 7. Experimental and theoretical results for aq;,. The
squares represent the theoretical results, for the same parame-
ters as in Fig. 6 and the circles with error bars represent the ex-
perimental values.
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IV. SUMMARY AND CONCLUSIONS

We have presented an extension of previous work, on
the distribution of cell sides x; in a random cellular sys-
tem, to the distribution of the average areas of /-cells a;.
The extended model uses the same selection mechanism
used in the original model to arrive at a single universal
distribution, but adds to the model an additional free pa-
rameter, the Von Neumann growth constant. Actually,
as we see, physical constraints on possible area distribu-
tions practically determine this parameter, within a nar-
row range. The derived area distribution is compared to
distribution measurements in soap froths, and good quali-
tative agreement is shown. Lewis’s law (linear depen-
dence of average area on cell-side number) is confirmed
asymptotically, both theoretically and experimentally.
Finally, we remark that it would be interesting to consid-
er a model for the detailed area distributions N,(a,t), par-
ticularly with respect to the size of the space of fixed
points and selection mechanisms.
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APPENDIX A: A DUALITY
BETWEEN SURFACE TRIANGULATIONS
AND CELLULAR STRUCTURES

In studies of fluctuating random surfaces, the geometry
of the plane is approximated by a triangulation, a tiling of
the plane by triangles. The curvature of the surface at
each vertex is related to the number of triangles meeting

at that vertex. The triangulations of the plane are count-
ed by looking at the dual lattice, which is a cellular struc-
ture with three walls meeting at each vertex. Counting
over all such graphs is performed by permuting a given
graph by manipulations formally identical to what is de-
scribed above as the T1 process (see Fig. 1). Since a dy-
namics of T1 processes is ergodic [20], the statistics of
such graphs should correspond to the fixed-point distri-
butions of a dynamic model which includes only T1 pro-
cesses. To model this process using our approach, we
define a rate constant W for the T1 process, the probabili-
ty of a T1 process in unit time per line. Each such event
results in the removal of a side from two cells and the ad-
dition of a side of two others. The process cannot take
place if either of the cells initially sharing the side is a
three-cell, so as to ensure that two-cells are not created.
The dynamic equations for the x; are then

dx, _
dr

X3

2

[(l——l)x,-l—lxl] (A1)

X3
+W(1l——
2

for I > 3. This model possesses a single fixed-point distri-
bution which

x,~Al/L, (A2)

where A=0.85. On the other hand, the exact random
surfaces calculations give for the same distribution the
asymptotic result

x1~}»[/\/7 )

with A=2. We see that the qualitative form of the solu-

tion is quite similar.
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